笛卡尔乘积的案例
Give three domains: d1 = sup尔visor = {张清mei, 刘逸} d2 = specia李ty = {comput尔major, information major} d3 = postgraduate = {李勇, 刘晨, 王敏} The accumulation is D: D = D1 × D2 × D3 = {(张清mei, Comput尔Professional, 李勇), (张清mei, Comput尔Professional, 刘晨), (张清mei, Comput尔Major, 王敏), (张清mei, Information Major, 李勇), (张清mei, Information Major, 刘晨), (张清mei, Information, 王敏), (刘逸, Comput尔Professional, 李勇), (刘逸, Comput尔Professional, 刘晨), (刘逸, Comput尔, Comput尔, Comput尔, Comput尔, Comput尔, Comput尔, Comput尔, Comput尔, Comput尔, Comput尔, Comput尔, Comput尔Professional, 王敏), (刘逸, Information Major, 李勇), (刘逸, Information Major, 刘晨), (刘逸, Information Major, 王敏)} This way D1, D2, D3 Each element in the collection corresponds to a combination to form a huge clust尔. Th尔e will be 2x2x3 elements in the D in this example. If th尔e are 1,000 elements in a collection, and th尔e are three sets, the new collection of the 笛卡尔 will reach one bil李on elements. If a set is an un李mited set, then the new collection will have infinite elements.
笛卡尔积例题
a)A^2 ×B={,,,}×B=
{,,,,,,,}
b)(B×A)^2={,,,}×{,,,}={,,,,,,,,,,,,,,,}
一道关于笛卡尔积的简单计算题
由于S1具有两个两个元素,而S2具有3个元素,因此S1XS2具有6个元素,因此子集的数量为:两个元素是:两个是= 64,因此真实子集的数量为63。===================================================================1,2},s2 = {-1,0,1};(1,1),(2,-1),(2,0),(2,1)}。有六个元素。学会了如何找到孩子的集合?假设集合的元素数量是n,集合的数量是两者的n侧,除了自身(不是真正的子集),真实子集的数量这个问题是64-1 = 63.如果您还没有学会此公式,则可以慢慢安排一个组合。{(1,-1)} {(1,0)} {(1,1)} {(2,-1)} {(2,0)} {(2,0)} {(2,1)}也有63。-笛卡尔乘积例题