本文目录
怎么理解OLED的自发光
要理解OLED的自发光,就必须不得不提到LCD。LCD跟OLED是目前主流的两种显示技术,LCD依靠LED/CCFL背光源发光,而OLED则是主动发光。可以形象理解为OLED屏幕每个像素点都是一个小灯泡,而LCD则是百叶窗后面放几个大灯泡。LCD可以在几百上千个分区内进行控光,而OLED相当于拥有几百万、甚至上千万的像素级灯管,控光能力当然不是一个数量级。
OLED原理的介绍
OLED原理(Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。其原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。
OLED显示屏的发光原理
有机发光显示技术由非常薄的有机材料涂层和玻璃基板构成。当有电荷通过时这些有机材料就会发光。OLED发光的颜色取决于有机发光层的材料,故厂商可由改变发光层的材料而得到所需之颜色。有源阵列有机发光显示屏具有内置的电子电路系统因此每个像素都由一个对应的电路独立驱动。OLED具备有构造简单、自发光不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广等优点,技术提供了浏览照片和视频的最佳方式而且对相机的设计造成的限制较少。-oled原理
oled屏幕原理
OLED显示原理与LCD有着本质上的区别,主要是通过电场驱动,有机半导体材料和发光材料通过过载流子注入和复合后实现发光。从本质上来说,就是通过ITO玻璃透明电极作为器件阳极,金属电极作为阴极,通过电源驱动,将电子从阴极传输到电子传输层,空穴从阳极注入到空穴传输层,之后分迁移到发光层,二者相遇后产生激子,让发光分子激发,经过辐射后产生光源。简单来说,一块OLED屏幕,就是由百千万个“小灯泡”组成。
OLED显示技术制备工艺对技水平要求非常高,整体上分为前工艺和后工艺,其中,前工艺主要是以光刻和蒸镀技术为主;后工艺主要以封装、切割技术为主。
相比传统的LCD技术,OLED显示技术具有明显的优势,OLED屏幕厚度可以控制在1mm以内,而LCD屏幕厚度通常在3mm左右,并且重量更加轻盈。OLED屏幕的液态结构可以保证屏幕的抗衰性能,并且具有LCD不具备的广视角,可以实现超大范围内观看同一块屏幕,画面不会失真。反应速度是LCD屏幕的千分之一。并且OLED屏幕耐低温,可以在-40℃环境下正常显示内容,发光效率更高、能耗低、生态环保,可以制作成曲面屏,从而给人们带来不同的视觉冲击。
-光
OLED发光原理是什么
OLED是指在电场驱动下,通过载流子注入和复合导致发光的现象。其原理是用ITO玻璃透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,然后分别迁移到发光层,相遇形成激子使发光分子激发,后者经过辐射后发出可见光。辐射光可从ITO 一侧观察到,金属电极膜同时也起了反射层的作用。
-oled原理
OLED的原理
OLED(有机发光二极管)结构是由正极(在玻璃基板上镀一层透明的铟锡氧化物 (ITO) )、负极(由金属或合金组合而成,Ag、Al、Mg、In、Li、Ca都可以做负极材料)、有机材料层(电子/空穴注入层、电子/空穴传输层、发光层)、封装后盖等组成的。
在这个结构中,电子传输层输出电子,空穴注入层提供空穴,在发射层和传导层的交界处,电子会与空穴结合,此时,电子会以光子的形式释放能量,所以导致OLED发光。光的颜色取决于发射层有机物分子的类型,如果在同一片OLED上放置几种有机薄膜,这样就能构成彩色显示器。光的亮度或强度取决于施加电流的大小,电流越大,光的亮度就越高。
-光
什么是OLEDOLED屏的技术原理是怎样的
OLED是指有机发光二极管,或称为有机电致发光器件。原理很简单,人们很早就发现将某种有机材料(小分子的或者聚合物的)夹在正负电极之间,当施加电压并有电流流过时,该有机材料就会发光,当选择不同的有机材料,就会获得不同的发光色,从而可以制作彩色显示屏。OLED的驱动技术与液晶显示器LCD类似,即采用薄膜晶体管TFT技术,称为AM-OLED。OLED每个像素都是可以单独控制发光的,即自发光,不同于LCD依靠整体背光照明,结构更为简单,较液晶显示响应也更快,但是有机材料的耐氧和湿气的能力较差,所以OLED屏对封装技术要求高,目前OLED屏的寿命可能略差。
-oled原理
OLED是什么
近年來隨著科技進步,個人電腦、網路及資訊傳播的普遍化,顯示器成為了人機互動不可或缺的重要角色,而不斷進步的顯示技術更是帶動了顯示器產業跨躍式的發展。傳統ㄧ般的CRT螢幕對使用者來說,顯得厚重、佔體積,因此已逐漸的被厚度較薄且大尺吋的PDP電漿顯示器及更輕薄的LCD液晶顯示器所取代。在新的平面顯示器中,還有另外一項新技術「OLED」。 OLED ( Organic Light Emitting Diode 有機發光二極體 ) ,又可稱為有機電激發光(Organic Electroluminescence,簡稱OEL)。利用此元件與技術所製成的顯示器具有輕薄、可撓曲式、易攜性、全彩高亮度、省電、可視角廣及無影像殘影……等優點,為未來平面顯示器的新趨勢。近幾年,此平面顯示新技術OLED更是吸引了產業及學術界的關注,進而從事開發與研究。
OLED的基本原理為: 加入一外加偏壓,使電子電洞分別經過電洞傳輸層(Hole Transport Layer)與電子傳輸層(Electron Transport Layer)後,進入一具有發光特性的有機物質,在其內發生再結合時,形成一“激發光子“(exciton)後,再將能量釋放出來而回到基態(ground state),而這些釋放出來的能量當中,通常由於發光材料的選擇及電子自旋的特性(spin state characteristics),只有25%(單重態到基態,singlet to ground state)的能量可以用來當作OLED的發光,其餘的75%(三重態到基態,triplet to ground state)是以磷光或熱的形式回歸到基態。由於所選擇的發光材料能階(band gap)的不同,可使這25%的能量以不同顏色的光的形式釋放出來,而形成OLED的發光現象(圖一)。
圖一,OLED發光原理最早在1963年時,Pope發表了世界上第一篇有關OLED的文獻,當時使用數百伏特的電壓通過Anthracene晶體時,觀察到發光的現象。但由於其過高的電壓與不佳的發光效率,在當時並未受到重視。一直到1987年美國柯達公司的 C. W. Tang 及 Steve Van Slyke 等人發明以真空蒸鍍法製成多層式結構的OLED元件(圖二)的小分子OLED元件後,可使電洞電子侷限在電子傳輸層與電洞傳輸層之界面附近再結合,大幅提高了元件的性能,其低操作電壓與高亮度的商業應用潛力吸引了全球的目光。自此之後,OLED便在業界、學界掀起了一股無法阻擋的旋風與魅力。而1990年英國劍橋大學的Friend等人成功的開發出以塗佈方式將多分子應用在OLED上,即Polymer LED,亦稱為PLED。不但再引發第二波研究熱潮,更確立了OLED在二十一世紀產業中所佔有的重要地位。
圖二,OLED元件結構 在發明此元件的過程中,陰陽兩極材料的發現也是重要的一環。陰極的金屬必需具備低功函數(work function)的特性,才能有效的將電子注入有機層內,鎂(Mg)的功函數夠低(3.5eV),也相當穩定,十分符合元件的要求。而當鎂銀(Ag)以十比一的比例形成合金後,少量的銀可以提供成長區(nucleating site)給鎂,使得鎂可以順利的在有機層上成膜。這樣的合金與比例便成為後續研究的範本。另外鋰(Li)金屬(1.4eV)的化合物如LiF、Li2O等,與鋁(Al)金屬(3.4eV)的化合物,也是另一種普遍使用在陰極上的材料。而在陽極的選擇上,則必需是一個高功函數又可透光的材質,這樣的選擇並不多,所以ITO(indium tin oxide)這樣的金屬氧化物,不但具有4.5eV-5.3eV的高功函數,且性質穩定又透光,便成了最佳的選擇。延用至今,這兩者仍是目前OLED元件中最常被使用的陰陽極材料。而其中材料AlQ3為電子傳輸層,NPB為電洞傳輸層,CuPc為電洞注入層。
在後續的研究當中發現,OLED可藉由在發光層中摻雜一不等濃度的摻雜物(dopant),使得主發光體(host)的能量得以轉移至摻雜物上而改變原本主發光體的光色以及發光的效率(在 Alq3 與 NPB 之間則夾有一發光層),不但可得到紅、藍、綠三色的OLED元件,也因此使得OLED朝著全彩化顯示器的目標又前進一大步。然而在這當中,各種材料的選擇是非常關鍵的,必需考慮材料本身的物理性質,如能階差、熱性質、形態學等,所以要找出一個合適的OLED材料,不論是電洞傳輸材料、電子傳輸材料、主發光材料以及不同光色的摻雜物,都需要科學家們一再的研究與改良,才能達到要求。
OLED的發展,是以全彩化的平面顯示器為最高目標在前進。目前紅、藍、綠三原色的摻雜材料都已成功的開發出來了,但是卻尚未達到完全令人滿意的地步,仍需要繼續的研究開發新的、更好的三原色摻雜材料,尤其是藍光及紅光。另外白光材料也是最近的一項研究重點,希望能用來作為照明光源或是液晶螢幕的背光源,可大幅減少目前白光光源所佔的空間與重量。
在1998年,美國的Baldo等人研究出以銥金屬錯合物(iridium complex)製成的元件,可以把原先三重態中流失的能量補救回來,將OLED元件的發光效率大幅提昇三倍以上,是近來OLED技術開發上的一大突破。
這幾年來,科學家正在研究以塑膠基板取代玻璃基板,製成可撓曲式的OLED,即Flexible OLED,也稱為FOLED,其元件構造如圖三所示,如果能順利研發成功,則類似筆捲式行動電話的商品(如圖四),將不再是如好萊塢電影中的科幻情節了。
-光