本文目录
- hive和hbase有什么关系和区别
- gbase和hive的区别
- Hive和HBase是大数据的重点,但二者的区别联
- hbase和hive有什么区别
- 谈谈hive 和 hbase 的区别
- Hbase和Hive在Hadoop中的功能有什么联系他们怎么分别作业的.两个数据库不会有重复信息导致资源浪费吗
- hbase和hive的差别是什么,各自适用在什么场景中
- hive与hbase的十大区别与联系
- hadoop学习之hbase和hive的区别
- 大数据学习之Hive和HBase之间的不同
hive和hbase有什么关系和区别
应该是Hadoop在hbase和Hive中的作用吧。 hbase与hive都是架构在hadoop之上的。都是用hadoop作为底层存储。而hbase是作为分布式数据库,而hive是作为分布式数据仓库。当然hive还是借用hadoop的MapReduce来完成一些hive中的命令的执行。而hbase与hive都是单独安装的。你需要哪个安装哪个,所以不存在重复信息。
gbase和hive的区别
Hive和Hbase是两种基于Hadoop的不同技术–Hive是一种类SQL的引擎,并且运行MapReduce任务,Hbase是一种在Hadoop之上的NoSQL 的Key/vale数据库。当然,这两种工具是可以同时使用的。就像用Google来搜索,用FaceBook进行社交一样,Hive可以用来进行统计查询,HBase可以用来进行实时查询,数据也可以从Hive写到Hbase,设置再从Hbase写回Hive。
Hive和HBase是大数据的重点,但二者的区别联
hbase和hive的主要区别是:他们对于其内部的数据的存储和管理方式是不同的,hbase其主要特点是仿照bigtable的列势存储,对于大型的数据的存储,查询比传统数据库有巨大的优势,而hive其产生主要应对的数据仓库问题,其将存在在hdfs上的文件目录
-hbase
hbase和hive有什么区别
1:Hive中的表是纯逻辑表,就只是表的定义等,即表的元数据。Hive本身不存储数据,它完全依赖HDFS和MapReduce。这样就可以将结构化的数据文件映射为为一张数据库表,并提供完整的SQL查询功能,并将SQL语句最终转换为MapReduce任务进行运行。 而HBase表是物理表,适合存放非结构化的数据。
2:Hive是基于MapReduce来处理数据,而MapReduce处理数据是基于行的模式;HBase处理数据是基于列的而不是基于行的模式,适合海量数据的随机访问。
3:HBase的表是疏松的存储的,因此用户可以给行定义各种不同的列;而Hive表是稠密型,即定义多少列,每一行有存储固定列数的数据。
4:Hive使用Hadoop来分析处理数据,而Hadoop系统是批处理系统,因此不能保证处理的低迟延问题;而HBase是近实时系统,支持实时查询。
5:Hive不提供row-level的更新,它适用于大量append-only数据集(如日志)的批任务处理。而基于HBase的查询,支持和row-level的更新。
6:Hive提供完整的SQL实现,通常被用来做一些基于历史数据的挖掘、分析。而HBase不适用与有join,多级索引,表关系复杂的应用场景。-hive
谈谈hive 和 hbase 的区别
Apache HBase是运行于HDFS顶层的NoSQL(=Not Only SQL,泛指非关系型的数据库)数据库系统。区别于Hive,HBase具备随即读写功能,是一种面向列的数据库。HBase以表的形式存储数据,表由行和列组成,列划分为若干个列簇(row family)。例如:一个消息列簇包含了发送者、接受者、发送日期、消息标题以及消息内容。每一对键值在HBase会被定义为一个Cell,其中,键由row-key(行键),列簇,列,时间戳构成。而在HBase中每一行代表由行键标识的键值映射组合。Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。
-hbase
Hbase和Hive在Hadoop中的功能有什么联系他们怎么分别作业的.两个数据库不会有重复信息导致资源浪费吗
简单来说hive用来批量处理数据,HBase用来快速索引数据。
HBase是一个分布式的基于列存储的非关系型数据库。HBase的查询效率很高,主要由于查询和展示结果。
hive是分布式的关系型数据库。主要用来并行分布式 处理 大量数据。hive中的所有查询除了“select * from table;“都是需要通过Map\Reduce的方式来执行的。由于要走Map\Reduce,即使一个只有1行1列的表,如果不是通过select * from table;方式来查询的,可能也需要8、9秒。但hive比较擅长处理大量数据。当要处理的数据很多,并且Hadoop集群有足够的规模,这时就能体现出它的优势。
通过hive的存储接口,hive和Hbase可以整合使用。参见:http://wenku.baidu.com/view/faec57fb04a1b0717fd5dd00.html?st=1
-hive
hbase和hive的差别是什么,各自适用在什么场景中
hbase和hive的主要区别是:他们对于其内部的数据的存储和管理方式是不同的,hbase其主要特点是仿照bigtable的列势存储,对于大型的数据的存储,查询比传统数据库有巨大的优势,而hive其产生主要应对的数据仓库问题,其将存在在hdfs上的文件目录结构映射成表。主要关注的是对数据的统计等方面。
适合的场景:
hbase:适合大型数据存储,其作用可以类比于传统数据库的作用,主要关注的数据的存取。
hive:适合大数据的管理,统计,处理,其作用类比于传统的数据仓库,主要关注的数据的处理。
总结:应对大数据的时候,如果你偏重于数据存储查询hbase无疑是更加适合,而你关注的是对大数据的处理结果查询,比如你查询的时候有类似于count,sum等函数操作 hive就能满足你的需求,一般有些项目都输在hive里面进行数据处理,然后将结果导入mysql等数据库或者hbase中进行查询,至于mysql与hbase的选择 比较倾向于你的处理之后的数据量
-hbase
hive与hbase的十大区别与联系
1、Hive跟Hbase都是基于hadoop的hdfs文件系统,都是apache下的项目
2、Hive是基于hdfs的数据仓库,优势在于做大规模数据的离线分析,不属于分布式数据库
3、Hbase则是分布式数据库,不是基于分布式文件系统,这是本质区别
4、hive跟hbase的数据可以互导
-hive
hadoop学习之hbase和hive的区别
这个要根据自己处理数据的方式来选择。
1、Hive是支持SQL语句的,执行会调用mapreduce,所以延迟比较高;
2、HBase是面向列的分布式数据库,使用集群环境的内存做处理,效率会比hive要高,但是不支持sql语句。
Hadoop开发和运行处理大规模数据,需要用hbase做数据库,但由于hbase没有类sql查询方式,所以操作和计算数据非常不方便,于是整合hive,让hive支撑在hbase数据库层面的 hql查询,hive也即做数据仓库。
-hbase
大数据学习之Hive和HBase之间的不同
hbase和hive的主要区别是:他们对于其内部的数据的存储和管理方式是不同的,hbase其主要特点是仿照bigtable的列势存储,对于大型的数据的存储,查询比传统数据库有巨大的优势,而hive其产生主要应对的数据仓库问题,其将存在在hdfs上的文件目录
-hbase