×

什么是深度学习 深度 深度学习

什么是深度学习(深度学习是学什么)

admin admin 发表于2022-09-04 13:33:56 浏览144 评论0

抢沙发发表评论

本文目录

深度学习是学什么


深度学习所对应的素养划分为三个领域:认知领域、人际领域和自我领域。深度学习是从三维目标达成学习到核心目标达成提升的学习。深度学习是对学习力培养的学习。正如田玉博士所说:学习的活力——感知力、思维力、创新力。感知力是入口,思维力是加工,创新力是出口。感知力是学习前奏,思维力是学习内核,创新力是学习终极结果。深度学习就是转知成智、转识成慧、化凡成圣。深度学习就是解决问题层次逐级提高的学习。给问题、给方法、找结论;给问题、悟方法、找结论;创设情境,让学生发现问题,找出方法,得出结论。深度学习是从当前外控到内驱力驱动的转型学习。深度学习是从当前同质化整齐划一的学习向个性化选择性学习变革的学习。

什么是深度学习值得学习吗


深度学习是机器学习的分支,是一种以人工神经网络为架构,对数据进行表征学习的算法,
深度学习不仅要求学习者想得深、学得深,而且还要求学习者学得活、用得活。深度学习可以促进意义生成的学习,是展开实践创新的学习,深度学习是值得学习的。

深度学习是什么求大神科普一下感谢?


请参考以下的资料,网络上有很多相当资料,自己也可以搜索参考:
深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。 
深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。 
深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。 
还可参考以下内容:
深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本等。
-深度学习

深度学习是什么,听着很难的样子


深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
-深度

究竟什么是“深度学习”


深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。
深度学习的概念由Hinton等人于2006年提出。基于深度置信网络(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。
深度学习是机器学习中一种基于对数据进行表征学习的方法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。深度学习的好处是用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。
-深度学习

什么是深度学习


深度学习(DL, Deep Learning)是机器学习(ML, Machine Learning)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能(AI, Artificial Intelligence)。-深度

深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 -深度学习

深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理,多媒体学习,语音,推荐和个性化技术,以及其他相关领域都取得了很多成果。-深度

深度学习使机器模仿视听和思考等人类的活动,解决了很多复杂的模式识别难题,使得人工智能相关技术取得了很大进步。

深度学习AI可扫描心脏血流:

英国《自然·机器智能》杂志13日发表的一项医学与人工智能(AI)研究中,瑞士科学家介绍了一种人工智能系统可以几秒之内扫描心血管血流。这个深度学习模型有望让临床医师在患者接受核磁共振扫描的同时,实时观察血流变化,从而优化诊断工作流。-深度学习

四维(4D)核磁共振扫描可以用来重建心血管血流随时间变化而产生的特征,对于心血管疾病的诊断具有重要意义。然而,这些扫描通常需要20分钟的处理时间,意味着扫描过程中,无法对做成像进一步评估。加速这类扫描,就能在患者接受扫描的同时完成实时评估,不仅能节省临床医师的时间,还能减少患者的不适。-深度

此次,瑞士苏黎世联邦理工学院研究人员瓦雷里·韦诗耐韦斯基及其同事,开发出了一种深度学习人工智能模型,可以在几秒之内对经过心脏的血流进行四维重建。研究团队用11个扫描案例训练了一个神经网络,发现这个网络可以准确重建正常患者和血流异常患者的主动脉血流,且准确度与传统方法一致。-深度学习

目前,这个人工智能系统还能在20秒左右的时间里重建一次扫描,比目前尖端的传统方法快30倍,比之前的深度学习方法快4.2倍。

以上内容参考    百度百科-深度学习