×

数据挖掘

什么是数据挖掘?数据挖掘的方法有哪些

admin admin 发表于2022-05-08 23:42:57 浏览144 评论0

抢沙发发表评论

什么是数据挖掘

由于数据科学刚刚兴起,数据科学家作为一种新生职业被提出,数据研究高级科学家Rachel Schutt将其定义为“计算机科学家、软件工程师和统计学家的混合体“。数据挖掘作为一个学术领域,横跨多个学科,涵盖了统计学、数学、机器学习和数据库等,此外还包括各类专业方向比如从油田电力、海洋生物、历史文本、电子通讯、法律税务等的各个专业领域。注意每一分类都需要相当的行业经验。

数据挖掘的方法有哪些

数据挖掘的的方法主要有以下几点: 1.分类挖掘方法。分类挖掘方法主要利用决策树进行分类,是一种高效且在数据挖掘方法中占有重要地位的挖掘方法。为了对数据进行较为准确的测试并据此分类,我们采用决策树算法,而决策树中比较典型的几种方法为:ID3算法,此方法具有较强的实用性,适用于大规模数据处理;KNN算法,此方法算量较大,适用于分别类别的数据处理。2..聚类分析挖掘方法。聚类分析挖掘方法主要应用于样品与指标分类研究领域,是一种典型的统计方法,广泛应用于商业领域。此聚类分析方法根据适用对象不同又可分为四种分析挖掘方法:基于网格的聚类分析方法、基于分层的聚类方法、基于密度的聚类挖掘方法和基于模型的聚类方法。 3.预测方法。预测方法主要用于对知识的预测以及对连续数值型数据的挖掘,传统的预测方法主要分为:时间序列方法、回归模型分析法、灰色系统模型分析。而现在预测方法主要采用神经网络与支持向量机算法,进行数据分析计算,同时可预测未来数据的走向趋势。 关于大数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。

什么是数据挖掘,简述其作用和应用

数据挖掘是指从大量的数据中通过算法搜索隐藏于其中信息的过程。

数据挖掘是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的,但又是潜在有用的信息和知识的过程。

数据挖掘的作用体现在数据挖掘的定义上,作用就是从大量的数据中搜索出隐藏于其中有用的信息。

扩展资料:

数据挖掘分析方法:

数据挖掘分为有指导的数据挖掘和无指导的数据挖掘。有指导的数据挖掘是利用可用的数据建立一个模型,这个模型是对一个特定属性的描述。无指导的数据挖掘是在所有的属性中寻找某种关系。具体而言,分类、估值和预测属于有指导的数据挖掘;关联规则和聚类属于无指导的数据挖掘。-数据挖掘

1、分类,它首先从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘技术,建立一个分类模型,再将该模型用于对没有分类的数据进行分类。

2、估值,估值与分类类似,但估值最终的输出结果是连续型的数值,估值的量并非预先确定。估值可以作为分类的准备工作。

3、预测,它是通过分类或估值来进行,通过分类或估值的训练得出一个模型,如果对于检验样本组而言该模型具有较高的准确率,可将该模型用于对新样本的未知变量进行预测。

4、相关性分组或关联规则。其目的是发现哪些事情总是一起发生。

5、聚类,它是自动寻找并建立分组规则的方法,它通过判断样本之间的相似性,把相似样本划分在一个簇中。

参考资料来源:百度百科-数据挖掘