×

hdfs将要存储的大文件

hdfs将要存储的大文件(hdfs存小文件)

admin admin 发表于2023-04-06 17:12:08 浏览53 评论0

抢沙发发表评论

本文目录一览:

HDFS 上每个数据节点最多能存多少,多大的数据

HDFS上每个数据节点最多能存储多少数据取决于节点的硬盘大小。对于单个节点来说,其存储的容量为磁盘容量减去hdfs-site.xml配置文件中dfs.datanode.du.reserved参数值。对于集群来说,取决于集群中所有DataNode节点的硬盘大小之和。但是需要注意考虑集群的备份数量,假设备份数量为3,集群总容量为3TB,则实际可以存储1TB的文件。

Hadoop HDFS处理大量的小文件

小文件是指文件大小明显小于HDFS上块(block)大小(默认64MB)的文件。如果存储小文件,必定会有大量这样的小文件,否则你也不会使用Hadoop(If you’re storing small files, then you probably have lots of them

(otherwise you wouldn’t turn to Hadoop)),这样的文件给hadoop的扩展性和性能带来严重问题。当一个文件的大小小于HDFS的块大小(默认64MB),就将认定为小文件否则就是大文件。为了检测输入文件的大小,可以浏览Hadoop DFS 主页 ,并点击Browse filesystem(浏览文件系统)。-hdfs将要存储的大文件

首先,在HDFS中,任何一个文件,目录或者block在NameNode节点的内存中均以一个对象表示(元数据)(Every file, directory and block in HDFS is represented as an object in the namenode’s memory),而这受到NameNode物理内存容量的限制。每个元数据对象约占150byte,所以如果有1千万个小文件,每个文件占用一个block,则NameNode大约需要15G空间。如果存储1亿个文件,则NameNode需要150G空间,这毫无疑问1亿个小文件是不可取的。-hdfs将要存储的大文件

其次,处理小文件并非Hadoop的设计目标,HDFS的设计目标是流式访问大数据集(TB级别)。因而,在HDFS中存储大量小文件是很低效的。访问大量小文件经常会导致大量的寻找,以及不断的从一个DatanNde跳到另一个DataNode去检索小文件(Reading through small files normally causes lots of seeks and lots of hopping from datanode to datanode to retrieve each small file),这都不是一个很有效的访问模式,严重影响性能。-hdfs将要存储的大文件

最后,处理大量小文件速度远远小于处理同等大小的大文件的速度。每一个小文件要占用一个slot,而task启动将耗费大量时间甚至大部分时间都耗费在启动task和释放task上。

Hadoop存档文件系统通常将HDFS中的多个文件打包成一个存档文件,减少namenode内存的使用

hadoop archive命令创建HAR文件

from:

hdfs适合存储多大的单个文件

首先hdfs是建立在多个机器文件系统上的一个逻辑上的文件系统。它的底层数据以数据块方式存储,块大小可进行调整。

假如你设置一个数据块大小为256M,上传一个1G的文件,它底层会将这个文件分成4块存储,每个块256M。你在hdfs上看到的是一个完整的文件,随时可对这个文件进行操作,无需关注它的存储。就像你在操作系统上操作文件一样,无需关注它存在那个磁盘哪个扇区-hdfs将要存储的大文件