×

余切函数

余切函数(余切函数的导数)

admin admin 发表于2023-04-09 14:32:07 浏览72 评论0

抢沙发发表评论

本文目录一览:

余割函数,正割函数,余切函数的图像,以及他们的定义域,谢谢了

1、余割函数(y=cscx),定义域为{x|x≠kπ,k∈Z},图像如下:

2、正割函数( y=secx),定义域为{x|x≠kπ+,k∈Z},图像如下:

3、余切函数(y=cotx),定义域为 {x|x≠kπ,k∈Z},图像如下:

扩展资料:

1、余割函数性质:

(1)在三角函数定义中,cscα=r/y。

(2)余割函数与正弦互为倒数:cscx=1/sinx。

(3)值域:{y|y≥1或y≤-1}。

(4)周期性:最小正周期为2π。

(5)奇偶性:奇函数。

(6)图像渐近线:x=kπ,k∈Z余割函数与正弦函数互为倒数)。

2、正割函数性质

(1)值域:secx≥1或secx≤-1。

(2)奇偶性:偶函数,即sec(-θ)=secθ.图像对称于y轴。

(3)周期性:最小正周期为2π。

(4) 单调性:(2kπ-  ,2kπ],[2kπ+π,2kπ+ ),k∈Z上递减;在区间[2kπ,2kπ+),(2kπ+π/2,2kπ+π],k∈Z上递增。

3、余切函数性质

(1)值域:余切函数的值域是实数集R,没有最大值、最小值。

(2)周期性:最小周期是π。

(3)奇偶性:奇函数。

(4)单调性:余切函数在每一个开区间  上都是减函数。

参考资料来源:百度百科—余割函数

参考资料来源:百度百科—正割函数

参考资料来源:百度百科—余切

余切函数是什么

任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点重合,而该角的始边则与正x轴重合。简单点理解:直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。

余切表示时用“cot+角度”,如:30°的余切表示为cot30°;角A的余切表示为cotA。旧用ctgA来表示余切,和cotA是一样的。假设∠A的对边为a、邻边为b,那么:cot A= b/a(即邻边比对边)。-余切函数

余切序列

“余切序列”是蝴蝶效应的一个典型例子。以下三个数列每一项都是前一项的余切;初值分别为1、1.00001、1.0001,但是从第10项开始,三个数列开始形成巨大的分歧。这就是混沌的数列,经过足够多项后,得到的数字完全可以看作是随机的,混沌的。-余切函数

余切函数公式是什么?

余切函数公式是:cot(A)=b/a

其中a为对边,b为临边,c为斜边。

cot坐标系表示:cotθ=x/y,在三角函数中cotθ=cosθ/sinθ,当θ≠kπ,k∈Z时cotθ=1/tanθ(当θ=kπ,k∈Z时,cotθ不存在),cotA=∠A的邻边比上∠A的对边。

扩展资料:

任意角终边上除顶点外的任一点的横坐标除以该点的非零纵坐标,角的顶点与平面直角坐标系的原点重合,而该角的始边则与正x轴重合简单点理解,直角三角形任意一锐角的邻边和对边的比,叫做该锐角的余切。

“余切序列”是蝴蝶效应的一个典型例子。以下三个数列每一项都是前一项的余切,初值分别为1、1.00001、1.0001,但是从第10项开始,三个数列开始形成巨大的分歧。这就是混沌的数列,经过足够多项后,得到的数字完全可以看作是随机的,混沌的。-余切函数

余切公式指的是什么?

余切函数公式是:cot(A)=b/a。

其中a为对边,b为临边,c为斜边。

cot坐标系表示:cotθ=x/y,在三角函数中cotθ=cosθ/sinθ,当θ≠kπ,k∈Z时cotθ=1/tanθ(当θ=kπ,k∈Z时,cotθ不存在),cotA=∠A的邻边比上∠A的对边。

三角函数

三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。

通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。