×

对数函数的导数

对数函数的导数(指数函数和对数函数的导数)

admin admin 发表于2023-04-11 04:52:11 浏览73 评论0

抢沙发发表评论

本文目录一览:

对数函数的导数是什么?

对数函数的导数是(logax)'=1/xlna,(lnx)'=1/x。如果a(a0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数要0且≠1,真数0。底数一样,真数越大,函数值越大。(a1时)底数一样,真数越小,函数值越大。

对数函数求导公式:(Inx)' = 1/x(ln为自然对数);(logax)' =x^(-1) /lna(a0且a不等于1)。

当a0且a≠1时,M0,N0,那么:(1)log(a)(MN)=log(a)(M)+log(a)(N)。

(2)log(a)(M/N)=log(a)(M)-log(a)(N)。

(3)log(a)(M^n)=nlog(a)(M)(n∈R)。

(6)换底公式:log(A)M=log(b)M/log(b)A (b0且b≠1)。

设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)。

log(a)a^b=b证明:设a^log(a)N=X,log(a)N=log(a)X,N=X。

对数函数

一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。

其中对数的定义:如果ax=N(a0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logaX(a0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

对数函数的导数公式,这个怎么解释,求教!

对数函数求导公式(loga x)'=1/(xlna)。

如果a(a0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。

底数则要0且≠1 真数0

并且,在比较两个函数值时:

如果底数一样,真数越大,函数值越大。(a1时)

如果底数一样,真数越小,函数值越大。(0a1时)

扩展资料:

对数的运算性质

当a0且a≠1时,M0,N0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N);

(2)log(a)(M/N)=log(a)(M)-log(a)(N);

(3)log(a)(M^n)=nlog(a)(M) (n∈R)

(4)log(a^n)(M)=(1/n)log(a)(M)(n∈R)

(5)换底公式:log(A)M=log(b)M/log(b)A (b0且b≠1)

参考资料来源:百度百科-对数公式

对数函数求导公式

对数函数求导公式是先利用换底公式,logab=lnb/lna,再利用(lnx)导数=1/x,logax=lnx/lna,其导数为1/(xlna)。 扩展资料 对数函数求导公式是先利用换底公式,logab=lnb/lna,再利用(lnx)导数=1/x,logax=lnx/lna,其导数为1/(xlna)。如果a(a0,且a≠1)的.b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。-对数函数的导数

对数函数的导函数怎么求导

对数函数的导数:

常数函数的导数

幂函数的导数、

三角函数的导数、

对数函数的导数、

指数函数的导数、

扩展资料:

复合函数之乘法型:遵循“前导后不导+后导前不导”。

比如:y=x·lnx 求导后得:

再比如:y=x·sinx,求导后得:y'=x'·sinx+x·(sinx)'=sinx+x·cosx所以,你们平时常见的y=3·x²求导得6x。

复合函数之除法型:遵循“(上导下不导-下导上不导)再除以下平方”。

对数求导的公式?

对数求导的公式:(loga x)'=1/(xlna)

一般地,如果a(a0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。

底数则要0且≠1 真数0

并且,在比较两个函数值时:

如果底数一样,真数越大,函数值越大。(a1时)

如果底数一样,真数越小,函数值越大。(0a1时)

扩展资料

常用导数公式:

1、y=c(c为常数) y'=0

2、y=x^n y'=nx^(n-1)

3、y=a^x y'=a^xlna,y=e^x y'=e^x

4、y=logax y'=logae/x,y=lnx y'=1/x

5、y=sinx y'=cosx

6、y=cosx y'=-sinx

7、y=tanx y'=1/cos^2x

8、y=cotx y'=-1/sin^2x

9、y=arcsinx y'=1/√1-x^2

对数函数的导数有哪些?

对数函数的导数有:

对数函数的性质如下:

当a0且a≠1时,M0,N0,那么:

(1)log(a)(MN)=log(a)(M)+log(a)(N)。

(2)log(a)(M/N)=log(a)(M)-log(a)(N)。

(3)log(a)(M^n)=nlog(a)(M) (n∈R)。

(4)换底公式:log(A)M=log(b)M/log(b)A (b0且b≠1).

设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)

log(a)a^b=b 证明:设a^log(a)N=X,log(a)N=log(a)X,N=X。