选择排序的基本选择排序
排序算法即解决以下问题的算法: 原序列的一个重排《a1*,a2*,a3*,...,an*》;,使得a1*《=a2*《=a3*《=...《=an*排序算法有很多,包括插入排序,冒泡排序,堆排序,归并排序,选择排序,计数排序,基数排序,桶排序,快速排序等。插入排序,堆排序,选择排序,归并排序和快速排序,冒泡排序都是比较排序,它们通过对数组中的元素进行比较来实现排序,其他排序算法则是利用非比较的其他方法来获得有关输入数组的排序信息。 n个记录的文件的直接选择排序可经过n-1趟直接选择排序得到有序结果:①初始状态:无序区为R[1..n],有序区为空。②第1趟排序在无序区R[1..n]中选出关键字最小的记录R[k],将它与无序区的第1个记录R交换,使R[1..1]和R[2..n]分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。……③第i趟排序第i趟排序开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1..i]和R分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区。 对比数组中前一个元素跟后一个元素的大小,如果后面的元素比前面的元素小则用一个变量k来记住他的位置,接着第二次比较,前面“后一个元素”现变成了“前一个元素”,继续跟他的“后一个元素”进行比较如果后面的元素比他要小则用变量k记住它在数组中的位置(下标),等到循环结束的时候,我们应该找到了最小的那个数的下标了,然后进行判断,如果这个元素的下标不是第一个元素的下标,就让第一个元素跟他交换一下值,这样就找到整个数组中最小的数了。然后找到数组中第二小的数,让他跟数组中第二个元素交换一下值,以此类推。 1.时间复杂度选择排序的交换操作介于 0 和 (n - 1) 次之间。选择排序的比较操作为 n (n - 1) / 2 次之间。选择排序的赋值操作介于 0 和 3 (n - 1) 次之间。比较次数O(n^2),比较次数与关键字的初始状态无关,总的比较次数N=(n-1)+(n-2)+...+1=n*(n-1)/2。交换次数O(n),最好情况是,已经有序,交换0次;最坏情况交换n-1次,逆序交换n/2次。交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CPU时间多,n值较小时,选择排序比冒泡排序快。其他排序算法的复杂度如右图所示。2.稳定性选择排序是给每个位置选择当前元素最小的,比如给第一个位置选择最小的,在剩余元素里面给第二个元素选择第二小的,依次类推,直到第n-1个元素,第n个元素不用选择了,因为只剩下它一个最大的元素了。那么,在一趟选择,如果一个元素比当前元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。比较拗口,举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中两个5的相对前后顺序就被破坏了,所以选择排序是一个不稳定的排序算法。
谁能讲一下冒泡排序原理
冒泡排序算法的原理如下:
1,比较相邻的元素。如果第一个比第二个大,就交换他们两个。
2,对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
3,针对所有的元素重复以上的步骤,除了最后一个。
4,持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
扩展资料:
冒泡排序算法分析:
1,时间复杂度
若文件的初始状态是正序的,一趟扫描即可完成排序。所需的关键字比较次数 和记录移动次数
均达到最小值: , 。所以,冒泡排序最好的时间复杂度为 。 若初始文件是反序的,需要进行 趟排序。每趟排序要进行
次关键字的比较(1≤i≤n-1),且每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较和移动次数均达到最大值:
冒泡排序的最坏时间复杂度为 。综上,因此冒泡排序总的平均时间复杂度为 。
2,算法稳定性:
冒泡排序就是把小的元素往前调或者把大的元素往后调。比较是相邻的两个元素比较,交换也发生在这两个元素之间。
所以,如果两个元素相等,是不会再交换的;如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
参考资料:百度百科----冒泡排序