×

傅里叶变换

傅里叶变换怎么理解?什么是快速傅里叶变换

admin admin 发表于2022-04-29 04:09:27 浏览115 评论0

抢沙发发表评论

傅里叶变换怎么理解

1、公式描述:公式中F(ω)为f(t)的像函数,f(t)为F(ω)的像原函数。 2、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。 3、相关 * 傅里叶变换属于谐波分析。 * 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; * 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; *卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; * 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT))。

什么是快速傅里叶变换

能克服时间域与频率域之间相互转换的计算障碍,在光谱、大气波谱分析、数字信号处理等方面有广泛应用的一种快速算法。 快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。 设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出N项复数序列的X(m),即N点DFT变换大约就需要N^2次运算。当N=1024点甚至更多的时候,需要N2=1048576次运算,在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。这样变换以后,总的运算次数就变成N+2(N/2)2=N+N2/2。继续上面的例子,N=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的DFT运算单元,那么N点的DFT变换就只需要Nlog2N次的运算,N在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是FFT的优越性。

傅里叶变换的定义是什么

中文名称:快速傅里叶变换 英文名称:fast Fourier transform;FFT 定义:离散傅里叶变换的一种快速算法,能克服时间域与频率域之间相互转换的计算障碍,在光谱、大气波谱分析、数字信号处理等方面有广泛应用。 所属学科: 大气科学(一级学科) ;动力气象学(二级学科) 有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换(FFT). 1965年,Cooley和Tukey提出了计算离散傅里叶变换(DFT)的快速算法,将DFT的运算量减少了几个数量级。从此,对快速傅里叶变换(FFT)算法的研究便不断深入,数字信号处理这门新兴学科也随FFT的出现和发展而迅速发展。根据对序列分解与选取方法的不同而产生了FFT的多种算法,基本算法是基2DIT和基2DIF。FFT在离散傅里叶反变换、线性卷积和线性相关等方面也有重要应用。