功放电路图进来解说
你的电路图有很大的错误,不能以你的电路图来作讲解,要以我的电路图讲解才行,我觉得在我讲完后,你应该再加40分给我才合理。
如图,是我对你的电路作修改后的电路图。这是一个BTL功放电路,这种电路的输出功率是OCL功放的4倍。因为OCL电路在输出峰值电压时,在喇叭两端得到的电压是电源电压的一半=U/2,而BTL电路在输出峰个值电压时,在喇叭两端得到的电压是电源电压=U,从而可以知道OCL的功率P=(U/2)^2/R,而BTL的功率P=U^2/R。(注意:这是计算最大值的功率,而不是计算平均功率。)
从图中可以看出,U1A与U1B是不同相位放的放大器,U1A是同相放大,U1B是反相放大。
(在以下的分析中,都是以信号的最大值来分析。)
当在Ui端输入的信号为正半周期时,即Ui的红色点是+电压,这个电压通过C3进入到U1A的+相输入端,经过放大后,在输出端的Uoa点的电压是+9V;这时从Ui输入的信号还有一路是流经C2,再经过R4进入U1B的-相输入端,经过放大后,由于信号是从-相输入端进入的放大器的,所以在输出端的Uob点上的电压是-9V;一个+9V与一个-9V加在喇叭的两端,总共=18V=电源总电压U,这只是一个正半周期的电压,而OCL电路需要正负两半周期的电压相加才等于BTL电路的一个半周期的电压。这就是为什么在同样的电源电压下,BTL功放的功率要比OCL功放的功率大的原因。-功放电路分析
当在Ui端输入的信号为负半周期时,这时的过程就跟上面的过程相反而已,由于打字很累,就没必要再分析了。
说到这,如何计算电压放大倍数呢?
BTL功放的电压放大倍数等于U1A的放大倍数加上U1B的放大倍数。
U1A是+相放大器,它的电压放大倍数是:(R1+R2)/R1=(10K+40K)/10K=5。当需要求Uoa的电压为多少时,就用Ui*(R1+R2)/R1=Uoa。
U1B是-相放大器,它的电压放大倍数是:R3/R4=50K/10K=5。当需要求Uob的电压为多少时,就用Ui*R3/R4=Uob。
上面所说是单个运放的放大倍数,而BTL电路的放大倍数是两个运放的放大倍数之和,所以它的放大倍数是(R1+R2)/R1+R3/R4=10。当要求出Uoa与Uob之间的电压时,就是用Ui*10=Uoa-Uob=喇叭两端的电压。-功放电路分析
在设计时,一定要让U1A的电压放大倍数=U1B的电压放大倍数,只有这样才使输出波形的正负半周对称(这是相对地线来说的,如果相对于喇叭来说,只要波形没有消顶失真,是看不出输出波形是否有对称问题的)。
在这个电路中的总电压放大倍数为10,你还可以根据需要自行计算。
还有一点就是,在你那个图中,有个小电容并联在喇叭的两端,是具有消除互调失真作用和消除放大器的高频自激振荡的。(完毕)
我好想你另外那40分呀!!!
专业功放电路分析
转换电路, 大功率专业功放常常使用H类方式, 特点是在小功率时使用低电压的一组供电, 大功率时低电压的能量不足够了, 通过一个转换电路(取样, 控制)去控制一对场效应管导通到高电压一组进行补充能量, 这样小信号时的效率会有所提高. 通常是在半功率时开始转换, 比如1000W的功放, 通常在500W开始转化到高电压一组.
专业功放的功率管大多采用集电极输出方式, 这个家用功放的发射极输出有很大不同. 集电极输出的好处是可以不使用云母片在散热气上, 使得功率管的散热更好.
另外, 家用功放大多采用差分放大的OCL电路, 但专业功放一般看不到差分放大的对管, 一般专业功放都是采用一个运放(4558等)作电压放大级, 整机增益在34dB左右.
为了确保稳定性还有很多保护电路, 过压过流保护, 温度保护, 中点电位保护等. 另外, 风扇的转速也会随着温度的升高而加速.
还有就是很多专业功放会有一个压缩限幅的功能, 就是当检测到输出功率已接近极限时, 会自动分流调输入端的信号, 使输出不会严重削波失真, 简单的电路是通过一个光电耦合器来实现, 还有通过专业的IC(LM13700)等来实现. 这方面在百威(Peavey)功放做的比较好.
为了实现舞台的大功率要求, 专业功放可以调节成BTL桥式推动, 这样功率大约可以提高3倍, 列如800W+800W变为BTL后就可能有2400W输出. 但这时为单通道了.
正是由于功率巨大, 在调节电路时要特别小心, 调静态电流必须从最小开始调, 如果一下调大, 会在瞬间烧毁功率管, 甚至起火等.
-功放电路分析
专业功放电路图怎么看
看图的原则之一便是,看电路的主要功能,看懂了主要的功能后,其他部分都是围绕主要功能进行的提升与改善,
根据P = UI可知,功率放大电路一般又由电压放大电路和电流放大电路组成,先进行电压放大,再进行电流放大,举个例子,基本的电压放大电路则是三极管射极接地的共发射极放大电路,而基本的电流放大电路则是射极跟随器电路,而信号经过了电压放大后,再进行电流放大时,电流放大电路就会有很高的消耗功率,因此发热严重,容易引起热击穿,为了解决这个热击穿的问题,往往在电流放大电路中引入达林顿连接,等等,为了使输出信号电压振幅接近电源电压,采用推挽式设计跟随器,而为了消除推挽式设计的交越失真,则增加温度补偿电路,有些为了扩大增益等,引入反馈,皆不一而足,但总的来说,抓住最关键的功能,其他的都是对关键功能的辅助,这一点在工程分析上比较实用。
-功放电路分析