×

pcb布线

pcb的布线是什么?pcb布线原则

admin admin 发表于2022-06-02 15:58:05 浏览74 评论0

抢沙发发表评论

pcb的布线是什么


  在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB设计中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:

  自动布线及交互式布线。在自动布线之前。可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的连线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行则容易产生寄生耦合。

  自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。

  并试着重新再布线,以改进总体效果。

  对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道。为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。

  1电源、地线的处理:既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周而引起的干扰,会使产品的性能下降,有时甚至影响到开发产品的成功率。所以对电源、地线的布线要认真对待,把电源、地线所产生的噪音干扰降到最低限度,以保证产品的质量。

  对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音干扰所产生的原因,现只对降低式抑制噪音作以下表述:众所周知的是在电源、地线之间加接去耦电容。

  尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线》电源线》信号线,通常信号线宽为:0.2~0.3mm,最精细宽度可达0.05~0.07mm;电源线为1.2~2.5
mm对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地不能这样使用);用大面积铜层作地线:在印制板上把没被用上的地方都与地相连接作为地线,或是做成多层板时将电源、地线各占用一层。

  2数字电路与模拟电路的共地处理:现在有许多PCB不再是单一功能的电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题。特别是地线上的噪音干扰。大家都知道数字电路的频率高而模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件;对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部进行处理好数、模共地的问题,而在印制板内部数字地和模拟地实际上是分开的,它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。

  3信号线布在电源(接地)层上:

  在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了。为解决这个矛盾,可以考虑在电源(接地)层上进行布线。遇到这种情况的时候首先应考虑用_电源层进行信号线的布线,其次才考虑在接地层进行信号线的布线,也就是说最好是保留接地层的完整性。

  4大面积导体中元件引脚的处理:

  在大面积的接地(电源)层中,当常用元器件的引脚与其连接时,对元件引脚的处理需要进行综合的考虑,就电气性能而言,元件引脚的焊盘与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接时就需要大功率加热器。②容易因温度不够而造成虚焊点。

  所以兼顾电气性能与工艺需要,做成十字花焊盘,称之为热隔离(heat
shiELD)俗称热焊盘(Thermal)。这样,可使在焊接时因截面过分散热而产生虚焊点的可能性大大减少。多层板的接地(电源)层元件引脚的处理与上述相同。

  5布线中网络系统的作用:在许多CAD软件系统中,布线是依据网络系统决定的。网络过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路则是无效的,如被元件引脚的焊盘占用的或被安装孔、定位孔所占用等等。网络过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网络系统来支持布线的进行。

  标准元器件两引脚之间的距离为0.1英寸(2.54mm)所以网络系统的基础一般就定为0.1英寸(2.54
mm)或小于O.1英寸的整倍数,如:0.05英寸、0.025英寸、0.02英寸等等。

  6设计规则检查(DRC):布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求。一般检查有如下几个方面:线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孑L之间的距离是否合理,是否满足生产要求;电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗),在PCB中是否还有能让地线加宽的地方;对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开;模拟电路和数字电路部分是否有各自独立的地线;加在PCB中的图形(如图标、注标)是否会造成信号短路;对一些不理想的线形进行修改,在PCB上是否加有工艺线,阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量;多层板中的电源(接地)层的外框边缘是否缩小,如电源(接地)层的铜箔露出板外容易造成短路等等。

pcb布线原则


对于初画PCB的人来说,当把原理图中封装信息导入到PCB,看到密密麻麻那么多线,纵横交错,感觉就无从下手;所以为了帮助初学者快速入门,现在我就从布局和布线两个方面做一个简单说明!

一 布局

1 一般布局PCB,我们会遵循“先大后小,先难后易”的布置原则,也就是说我们一般先去布局重要单元电路,以及核心器件,比如MCU最小系统、高频高速模块电路,这些都可以理解为重要单元电路;

2 布局中需要参考原理图框图,可以先把原理图中各个单元电路先布局好,到时候整体在进行拼凑,当然拼抽的时候,要考虑电路信号的主提走向;

3 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。

4 去耦电容的布局要尽可能靠近IC的电源管脚,并且保证电源与地之间形成的回路最短,当然为了达到去耦最佳效果,电源与地需经过去耦电容两端,然后再连接到IC电源和地两端;

5 对于一些需要过静电测试的产品,其器件放置尽量离板边缘距离大于3.5mm;如果板子空间有限,可以在离板边缘大于0.45mm出打过孔到地;

6 在完成板子性能的基础下,布局中就需要考虑美观,对于相同结构的电路部分,尽可能采用“对称式“布局,总体布局可以按照”均匀分布,重心平衡,版面美观“的标准;

7 对于发热器件,比如MOS管,可以采取加散热片的形式,给予散热;

二 布线

1 地走线线径》电源走线线径》信号走线线径,对于1盎司铜厚的板子,我们会预计1mm走线宽度能走1A电流

2 对于信号线走线,我们一般会优先走模拟小信号、高速信号、高频信号、时钟信号;其次再走数字信号;

3 晶振周围尽量禁空,尤其其底部禁止走线;且应远离板上的电源部分,以防止电源和时钟相互干扰;

4 避免直角走线 、锐角走线,因为直角、锐角走线会使得传输线的线宽产生变化,造成其阻抗的不连续。如果进行直角走线其拐角可以等效为传输线上的容性负载,减缓上升时间,在高速、高频中就变得尤为明显,而且其造成的阻抗不连续,还会增加信号的反射;其直角尖端还为产生EMI;

5 对于模拟信号和数字信号应尽量分块布线,不宜交叉或混在一起,对于其模拟地和数字地也应用磁珠或者0R电阻进行隔离;

6 地线回路环路保持最小,即信号线与其回路构成的环面积要尽可能小,环面积越小,对外的辐射越少,接收外界的干扰也越小。 对于top层和bottom层敷地的时候,需要仔细查看,有些信号地是否被信号线分割,造成地回路过远,此时应该在分割处打过孔,保证其地回路尽可能小;

7 为了减少线间串扰,应保证线间距足够大,当线中心间距不少于3倍线宽时,则可保持70%的电场不互相干扰,称为3W规则。如要达到98%的电场不互相干扰,可使用10W的间距 ;

8 信号线的长度避免为所关心频率的四分之一波长的整数倍,否则此信号线会产生谐振,谐振时信号线会产生较强的辐射干扰;

9 信号走线禁止走成环形,其环形容易形成环形天线,产生较强的辐射干扰;

10 对于天线ANT端走线应尽量短而直,其阻抗也应通过 si9000 去计算,保证其线阻为50欧姆(一般天线端口走线为50欧姆);

11 敷铜时,对其焊盘引脚应采用十字焊盘,不宜采用实心焊盘敷铜,这样在生产时候,器件容易立碑;

PCB布线的步骤是怎样的怎么规划走线啊!(新手请多指教!)


1、按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;

2、定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;

3、卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;

4、元器件的外侧距板边的距离为5mm;

5、贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;

6、金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;

7、发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;

8、电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;-pcb布线

规划走线时,需注意以下几点

1、输入端与输出端的边线应避免相邻平行, 以免产生反射干扰。必要时应加地线隔离;两相邻层的布线要互相垂直,平行容易产生寄生耦合。

2、地线>电源线>信号线,通常信号线宽为:8mil~12mil;电源线为50mil~100mil。对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用)

3、可以用一些孤岛铜,然后将其连接到地平面上。

4、在PCB板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。-pcb布线

5、实在没地方布线,可考虑布在VCC层,其次考虑GND层。

6、标准元器件两腿之间的距离为100mil(2.54mm),所以网格系统的基础一般就定为100mil(2.54 mm)或小于100mil的整倍数,如:50mil、25mil、20mil等。

一般布局时选择50mil网格,布线选择5mil网格,孔距和器件距离设为25mil(让器件之间可以走线) 

7、板边的铺铜要距离板边20mil。

8、PCB 板上延时为 0.167ns/inch.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。

9、线径越宽,距电源/地越近,或隔离层的介电常数越高,特征阻抗就越小。

10、PCB板上的走线可等效为串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25-0.55 ohms/英尺。并联电阻阻值通常很高。

11、如果采用CMOS或TTL电路进行设计,工作频率小于10MHz,布线长度应不大于7英寸。工作频率在50MHz布线长度应不大于1.5英寸。如果工作频率达到或超过75MHz布线长度应在1英寸。

12、任何高速和高功耗的器件应尽量放置在一起以减少电源电压瞬时过冲。

扩展资料:

PCB布线的常见规则

1、连线精简原则:

连线要精简,尽可能短,尽量少拐弯,力求线条简单明了,特别是在高频回路中,当然为了达到阻抗匹配而需要进行特殊延长的线就例外了,例如蛇行走线等。

2、安全载流原则:

铜线的宽度应以自己所能承载的电流为基础进行设计,铜线的载流能力取决于以下因素:线宽、线厚(铜铂厚度)、允许温升等,下表给出了铜导线的宽度和导线面积以及导电电流的关系(军品标准),可以根据这个基本的关系对导线宽度进行适当的考虑。-pcb布线

3、电磁抗干扰原则:

电磁抗干扰原则涉及的知识点比较多,例如铜膜线的拐弯处应为圆角或斜角(因为高频时直角或者尖角的拐弯会影响电气性能)双面板两面的导线应互相垂直、斜交或者弯曲走线,尽量避免平行走线,减小寄生耦合等。

参考资料:百度百科-PCB