常用的数据挖掘工具有哪些
市场上的数据挖掘工具一般分为三个组成部分:a、通用型工具;b、综合/DSS/OLAP数据挖掘工具;c、快速发展的面向特定应用的工具。常用的数据挖掘工具有很多,例如:
1、思迈特软件Smartbi的大数据挖掘平台:通过深度数据建模,为企业提供预测能力支持文本分析、五大类算法和数据预处理,并为用户提供一站式的流程式建模、拖拽式操作和可视化配置体验。
2、Enterprise Miner 这是一种在我国的企业中得到采用的数据挖掘工具,比较典型的包括上海宝钢配矿系统应用和铁路部门在春运客运研究中的应用。SAS Enterprise Miner是一种通用的数据挖掘工具,按照“抽样——探索——转换——建模——评估”的方法进行数据挖掘。可以与SAS数据仓库和OLAP集成,实现从提出数据、抓住数据到得到解答的“端到端”知识发现。
3、SPSS Clementine是一个开放式数据挖掘工具,曾两次获得英国政府SMART 创新奖,它不但支持整个数据挖掘流程,从数据获取、转化、建模、评估到最终部署的全部过程,还支持数据挖掘的行业标准——CRISP-DM。
更多的了解我们可以到思迈特软件Smartbi了解一下。 在金融行业,全球财富500强的10家国内银行中,有8家选用了思迈特软件Smartbi;国内12家股份制银行,已覆盖8家;国内六大银行,已签约4家;国内排名前十的保险公司已经覆盖6家;国内排名前十的证券公司已经覆盖5家。
数据挖掘的技术都有哪些
如果我们学习数据分析,那么肯定少不了也要好好学习一下数据挖掘。我们都知道,要想掌握好数据挖掘就需要掌握很多的相关技术。一般来说,数据挖掘工作的技术有关联规则、分类、聚类、决策树、序列模式,下面我们就给大家讲述一下这些知识。
1.关联规则
首先我们给大家讲述一下关联规则,一般来说,关联规则使两个或多个项之间的关联以确定它们之间的模式。关联通常用于销售点系统,以确定产品之间的共同趋势。在数据挖掘中,这是一个非常简单的方法,人们会惊讶与其中有多少智慧和洞察,它可以提供许多企业的日常使用的信息,来提高效率和增加收入,应用领域包括物品的实物摆放组织、市场营销和产品的交叉销售和上销。所以解决商业问题离不开数据挖掘技术中的关联规则。
2.分类
然后给大家说一说分类我们可以使用多个属性来标记特定类别的项。分类将项目分配到目标类别或类中,以便准确地预测该类内部会发生什么。某些行业会将客户进行分类。通过分类我们能够知道其中的情况,然后根据这些情况进行下一步动作。
3.聚类
接着给大家说一下聚类,聚类是将数据记录组合在一起的方法,通常这样做是为了让最终用户对数据库中发生的事情有一个高层次的认识。查看对象分组情况可以帮助市场细分领域的企业。在这个例子中可以使用聚类将市场细分为客户子集。然后,每个子集可以根据簇的属性来制定特定的营销策略。
4.决策树
决策树用于分类或预测数据。决策树从一个简单的问题开始,它有两个或多个的答案。每个答案将会引出进一步的问题,该问题又可被用于分类或识别可被进一步分类的数据,或者可以基于每个答案进行预测。将数据分成多个叶结点,所有叶结点的数据记录数的加和等于输入数据的记录总数。例如,父结点中的数据记录总数等于其两个子结点中包含的记录总和。当在决策树上上下移动时,流失前和流失后的客户数量是需要存储的。能够很容易的理解模型的构建。如果你需要针对可能流失的客户提供一份市场营销方案,则该模型非常易于使用。
5.序列模式
序列模式识别相似事件的趋势或通常情况发生的可能。这种数据挖掘技术经常被用来助于理解用户购买行为。许多零售商通过数据和序列模式来决定他们用于展示的产品。根据客户数据,您可以识别客户在一年中不同时间购买的特定的商品集合。
通过上述的内容我们不难看出,数据挖掘工作基本上都是去解决商业问题的,所以对于产品经理来说,好好了解和掌握数据挖掘知识,对自己的职业发展是非常有帮助的,当然,只是了解这些还是不够的,我们还要学习更多的知识来丰富自己,让自己的职场人生更加光彩溢目。
问题做数据挖掘一般是用什么编程语言比较好
数据挖掘的编程语言,一般要看用于什么领域来进行选择,介绍一下数据挖掘的编程语言的应用:
数据挖掘会用到SQL结构化查询语言,其它任何编程语言仅是借助SQL结构化查询语言完成数据库的操作、查询和维护。结构化查询语言(Structured Query Language)简称SQL,是一种特殊目的的编程语言,是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统。一般来说做数据分析挖掘每种编程语言基本都能做。比如在社会经济领域,普遍应用的是SPASS、SAS、MODELER等,一般的话,应用EXCEL也是可以的;在其他领域,编程能力强的可以用MATLAB,Python,R等语言.上面这几种最好都学一下,做分析方面,R语言是强项。数据可视化是Matlab。但是挖数据要做爬虫,这个又会用到Java和Python,Python是个全能,在分析方面有Numpy,Scipy等数据分析库,又有很多爬虫库,还有matplotlib的库把数据可视化。
如果你想了解数据挖掘使用什么编程语言,推荐CDA数据分析师的课程,课程主要培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化思维、挖掘经营思维、算法思维、预测分析思维,全方位提升学员的数据洞察力。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。
-rapidminer