×

集合的基本运算公式 集合的基本运算

集合的基本运算急(需要过程)好的加分?集合的运算法则的公式咋写,

admin admin 发表于2022-06-19 07:06:48 浏览103 评论0

抢沙发发表评论

集合的基本运算急(需要过程)好的加分


1.
A在-1《=x《=5的范围时,于B的交集都为空的,所以:a》=-1或a+3《=5时为成立。结果a》=-1或a《=2.
2.即a的范围在b内。a的范围要不在小于-1的一边,要不在大于5的一边,才会被b包含在内,即a+3《-1或者a》5.结果为a《-4或a》5
再看看别人怎么说的。

集合的运算法则的公式咋写,


①loga(mn)=logam+logan;
  ②loga(m/n)=logam-logan;

③对logam中m的n次方有=nlogam;
  如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数
  的底。定义:
若a^n=b(a》0且a≠1)
则n=log(a)(b)
  基本性质:
  1、a^(log(a)(b))=b
  2、log(a)(mn)=log(a)(m)+log(a)(n);
  3、log(a)(m÷n)=log(a)(m)-log(a)(n);
  4、log(a)(m^n)=nlog(a)(m)
  5、log(a^n)m=1/nlog(a)(m)
  推导:
  1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。
  2、mn=m×n
  由基本性质1(换掉m和n)
  a^[log(a)(mn)]
=
a^[log(a)(m)]×a^[log(a)(n)]
  由指数的性质
  a^[log(a)(mn)]
=
a^{[log(a)(m)]
+
[log(a)(n)]}
  又因为指数函数是单调函数,所以
  log(a)(mn)
=
log(a)(m)
+
log(a)(n)
  3、与(2)类似处理
mn=m÷n
  由基本性质1(换掉m和n)
  a^[log(a)(m÷n)]
=
a^[log(a)(m)]÷a^[log(a)(n)]
  由指数的性质
  a^[log(a)(m÷n)]
=
a^{[log(a)(m)]
-
[log(a)(n)]}
  又因为指数函数是单调函数,所以
  log(a)(m÷n)
=
log(a)(m)
-
log(a)(n)
  4、与(2)类似处理
  m^n=m^n
由基本性质1(换掉m)
a^[log(a)(m^n)]
=
{a^[log(a)(m)]}^n
  由指数的性质
  a^[log(a)(m^n)]
=
a^{[log(a)(m)]*n}
  又因为指数函数是单调函数,所以
  log(a)(m^n)=nlog(a)(m)
  基本性质4推广
  log(a^n)(b^m)=m/n*[log(a)(b)]
  推导如下:
由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]
log(a^n)(b^m)=ln(b^m)÷ln(a^n)
  换底公式的推导:
设e^x=b^m,e^y=a^n
则log(a^n)(b^m)=log(e^y)(e^x)=x/y
x=ln(b^m),y=ln(a^n)
得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)
  由基本性质4可得
log(a^n)(b^m)
=
[m×ln(b)]÷[n×ln(a)]
=
(m÷n)×{[ln(b)]÷[ln(a)]}
  再由换底公式
log(a^n)(b^m)=m÷n×[log(a)(b)]

集合的基本运算有哪些


集合的基本运算:交集、并集、相对补集、绝对补集、子集。

(1)交集:集合论中,设A,B是两个集合,由所有属于集合A且属于集合B的元素所组成的集合,叫做集合A与集合B的交集(intersection),记作A∩B。

(2)并集:给定两个集合A,B,把他们所有的元素合并在一起组成的集合,叫做集合A与集合B的并集,记作A∪B,读作A并B。

(3)相对补集:若A和B 是集合,则A 在B 中的相对补集是这样一个集合:其元素属于B但不属于A,B - A = { x| x∈B且x∉A}。

(4)绝对补集:若给定全集U,有A⊆U,则A在U中的相对补集称为A的绝对补集(或简称补集),写作∁UA。

(5)子集:子集是一个数学概念:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集。符号语言:若∀a∈A,均有a∈B,则A⊆B。