这就促使了解析几何的产生,立体几何归结为三维空间解析几何的研究范畴,解析几何是由笛卡尔、费马分别独立创建的,即用几何观点及思想方法去探讨各数学理论,即用几何观点及思想方法去探讨各数学理论,从解析几何的观点出发,笛卡尔引进坐标系后,总体上说。
几何是什么意思呢
几何,就是研究空间结构及性质的一门学科。是数学中最基本的研究内容之一,与分析,代数等具有同样重要的地位。并且关系密切。几何思想是数学中最重要的一类思想。
什么叫几何
几何,就是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等等具有同样重要的地位,并且关系极为密切。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。常见定理有勾股定理,欧拉定理,斯图尔特定理等。几何学发展历史悠长,内容丰富。它和代数、分析、数论等等关系极其密切。几何思想是数学中最重要的一类思想。暂时的数学各分支发展都有几何化趋向,即用几何观点及思想方法去探讨各数学理论。平面与立体最早的几何学当属平面几何。平面几何就是研究平面上的直线和二次曲线(即圆锥曲线,就是椭圆、双曲线和抛物线)的几何结构和度量性质(面积、长度、角度)。平面几何采用了公理化方法,在数学思想史上具有重要的意义。平面几何的内容也很自然地过渡到了三维空间的立体几何。为了计算体积和面积问题,人们实际上已经开始涉及微积分的最初概念。笛卡尔引进坐标系后,代数与几何的关系变得明朗,且日益紧密起来。这就促使了解析几何的产生。解析几何是由笛卡尔、费马分别独立创建的。这又是一次具有里程碑意义的事件。从解析几何的观点出发,几何图形的性质可以归结为方程的分析性质和代数性质。几何图形的分类问题(比如把圆锥曲线分为三类),也就转化为方程的代数特征分类的问题,即寻找代数不变量的问题。立体几何归结为三维空间解析几何的研究范畴,从而研究二次曲面(如球面,椭球面、锥面、双曲面,鞍面)的几何分类问题,就归结为研究代数学中二次型的不变量问题。总体上说,上述的几何都是在欧氏空间的几何结构——即平坦的空间结构——背景下考察,而没有真正关注弯曲空间下的几何结构。欧几里得几何公理本质上是描述平坦空间的几何特性,特别是第五公设引起了人们对其正确性的疑虑。由此人们开始关注其弯曲空间的几何,即“非欧几何”。非欧几何中包括了最经典几类几何学课题,比如“球面几何”,“罗氏几何”等等。另一方面,为了把无穷远的那些虚无缥缈的点也引入到观察范围内,人们开始考虑射影几何。这些早期的非欧几何学总的来说,是研究非度量的性质,即和度量关系不大,而只关注几何对象的位置问题——比如平行、相交等等。这几类几何学所研究的空间背景都是弯曲的空间。微分几何为了引入弯曲空间的上的度量(长度、面积等等),我们就需要引进微积分的方法去局部分析空间弯曲的性质。微分几何于是应运而生。研究曲线和曲面的微分几何称为古典微分几何。但古典微分几何讨论的对象必须事先嵌入到欧氏空间里,才定义各种几何概念等等(比如切线、曲率)。一个几何概念如果和几何物体所处的空间位置无关,而只和其本身的性态相关,我们就说它是内蕴的。用物理的语言来说,就是几何性质必须和参考系选取无关。
几何是什么意思
几何 [jǐ hé]
释义:
多少。(用于反问)
年几何矣。--《战国策.赵策》罗敷年几何。--《乐府诗集.陌上桑》
所杀几何。--唐. 李朝威《柳毅传》相去能几何。--明. 刘基《诚意伯刘文成公文集》
几何学简称