计算机原码反码补码怎么算
计算机原码反码补码计算方法:
1、原码
原码就是符号位加上真值的绝对值,即用第一位表示符号,其余位表示值。比如如果是8位二进制:
[+1]原 = 0000 0001
原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:[1111 1111 , 0111 1111]
即[-127 , 127]
原码是人脑最容易理解和计算的表示方式。
2、反码
反码的表示方法是:正数的反码是其本身。负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。
[+1] = 原 = 反
= 原 = 反
可见如果一个反码表示的是负数,人脑无法直观地看出来它的数值。通常要将其转换成原码再计算。
3、补码
补码的表示方法是:正数的补码就是其本身。负数的补码是在其原码的基础上,符号位不变,其余各位取反,最后+1。(即在反码的基础上+1)。
[+1] = 原 = 反 = 补
= 原 = 反 = 补
对于负数,补码表示方式也是人脑无法直观看出其数值的。通常也需要转换成原码在计算其数值。
扩展资料:
原码,反码和补码是完全不同的。既然原码才是被人脑直接识别并用于计算表示方式,为何还会有反码和补码呢?
首先,因为人脑可以知道第一位是符号位,在计算的时候我们会根据符号位,选择对真值区域的加减。但是对于计算机,加减乘数已经是最基础的运算,要设计的尽量简单。计算机辨别“符号位“显然会让计算机的基础电路设计变得十分复杂。于是人们想出了将符号位也参与运算的方法。我们知道,根据运算法则减去一个正数等于加上一个负数,即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法,这样计算机运算的设计就更简单了。-原码反码补码
于是人们开始探索将符号位参与运算,并且只保留加法的方法。
计算机原码反码补码怎么算
计算机原码反码补码计算方法:
1、原码
原码就是符号位加上真值的绝对值,即用第一位表示符号,其余位表示值。比如如果是8位二进制:
[+1]原 = 0000 0001
原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:[1111 1111 , 0111 1111]
即[-127 , 127]
原码是人脑最容易理解和计算的表示方式。
2、反码
反码的表示方法是:正数的反码是其本身。负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。
[+1] = 原 = 反
= 原 = 反
可见如果一个反码表示的是负数,人脑无法直观地看出来它的数值。通常要将其转换成原码再计算。
3、补码
补码的表示方法是:正数的补码就是其本身。负数的补码是在其原码的基础上,符号位不变,其余各位取反,最后+1。(即在反码的基础上+1)。
[+1] = 原 = 反 = 补
= 原 = 反 = 补
对于负数,补码表示方式也是人脑无法直观看出其数值的。通常也需要转换成原码在计算其数值。
扩展资料:
原码,反码和补码是完全不同的。既然原码才是被人脑直接识别并用于计算表示方式,为何还会有反码和补码呢?
首先,因为人脑可以知道第一位是符号位,在计算的时候我们会根据符号位,选择对真值区域的加减。但是对于计算机,加减乘数已经是最基础的运算,要设计的尽量简单。计算机辨别“符号位“显然会让计算机的基础电路设计变得十分复杂。于是人们想出了将符号位也参与运算的方法。我们知道,根据运算法则减去一个正数等于加上一个负数,即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法,这样计算机运算的设计就更简单了。-原码反码补码
于是人们开始探索将符号位参与运算,并且只保留加法的方法。
计算机中的反码和补码
哪有什么原码、反码!
在计算机中,只使用补码来存放正负数。
计算机中,以八个二进制位,作为一个字节。
数字 0,其补码就是 0000 0000。
正数,依次递增,即可。
负数,就是依次递减。
数字 +1,其补码就是 0000 0001。
数字 +2,其补码就是 0000 0010。
。。。
数字-1,就是 0000 0000-1 = 1111 1111。
数字-2,就是 1111 1111-1 = 1111 1110。
。。。
----
归纳:
正数的补码,就是:数字本身。
负数的补码,就是:0 + 该负数。
----
比如:
+ 9 的补码是:0000 1001。
-9 的补码就是:0000 0000-0000 1001=1111 0111。
求补码的计算过程,并不需要原码反码。
----
有了补码,就可以用加法,代替减法运算了。
比如:
(+2)-(+1) = +1。
计算机计算如下:
0000 0010 + 1111 1111= 0000 0001。